

	Module Details
Module Title	Process Design
Module Code	CPE7014-B
Academic Year	2024/5
Credits	20
School	School of Engineering
FHEQ Level	FHEQ Level 7

Contact Hours				
Туре	Hours			
Seminars	Advanced process design: constraints on process design; chemical, technical, environmental, safety and economic. Shortcut techniques for capital and operating cost estimation (breakeven point, cash flow). Reaction and recycle structures of flowsheets. Mass and Energy balance around process flowsheet. Synthesis of separation trains, order of columns within distillation units. Heat exchange networks and process integration. Process safety, health and the environment.			
Lectures	36			
Tutorials	12			
Directed Study	156			

Availability			
Occurrence	Location / Period		
BDA	University of Bradford / Semester 1		

Module Aims

Enable students to practice advanced principles of process Design, starting from a knowledge of the chemistry involved and taking into account chemical, technical, environmental, safety and economic constraints

Outline Syllabus

Advanced process design: constraints on process design; chemical, technical, environmental, safety and economic. Shortcut techniques for capital and operating cost estimation (breakeven point, cash flow). Reaction and recycle structures of flowsheets. Mass and Energy balance around process flowsheet. Synthesis of separation trains, order of columns within distillation units. Heat exchange networks and process integration. Process safety, health and the environment.

Learning Outcomes				
Outcome Number	Description			
01	Describe typical schemes for maximising the selectivity of a process, depending on the underlying chemistry; and describe methods for designing separation trains and heat exchange networks.			
02	Construct flow sheets for a given chemical process starting from a knowledge of the chemistry; perform approximate material balances, estimate capital and operating costs of a process; and evaluate a proposed process against the constraints (safety, health, technical).			
03	Obtain relevant chemical and process data and apply these in the chemical process design; and enhance communication (writing) .			

Learning, Teaching and Assessment Strategy

Lectures and examples classes. All module learning outcomes are assessed via an individual project. This will include a completion of: (i) process selection (ii) develop process flowsheet (iii) carry out the preliminary mass and energy balance on the given design project.

Supplementary assessment: As initial.

Mode of Assessment				
Туре	Method	Description	Weighting	
Summative	Coursework - Written	An individual project covering advanced aspects of process design (4000 Words)	100%	

Reading List

To access the reading list for this module, please visit https://bradford.rl.talis.com/index.html

Please note:

This module descriptor has been published in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publication, but minor changes may occur given the interval between publishing and commencement of teaching. Upon commencement of the module, students will receive a handbook with further detail about the module and any changes will be discussed and/or communicated at this point.

© University of Bradford 2024

https://bradford.ac.uk